LSTM网络文本区域融合的端子排字符识别方法Character Recognition Method for Terminal Strip Based on LSTM Network and Text Region Fusion
夏峻;白英;郭科;邵雪瑾;张志龙;
摘要(Abstract):
在变电站巡检的过程中,巡检员需要对端子排的电缆套管标号进行录入,由于传统的字符识别方法难以应对变电站字符密集、字体细小等问题,巡检员往往只能够依赖人工手段对电缆套管标号进行核查。因此,为了提高巡检的智能化水平和巡检效率,需要设计一种新型的端子排自动化字符识别方法,提高变电站场景下的字符识别性能,从而代替高重复高强度的人工劳动。针对上述问题,本文提出一种基于LSTM文本区域融合的端子排字符识别方法。论文将本文提出的新方法与两种代表性的光学字符识别方法进行了对比实验,实验结果显示,本文所提出的方法在字符识别性能上具有明显优势。
关键词(KeyWords): 端子排;光学字符识别;字符检测;文本区域融合;文本内容识别
基金项目(Foundation):
作者(Authors): 夏峻;白英;郭科;邵雪瑾;张志龙;
参考文献(References):
- [1] Jaderberg M,Vedaldi A,Zisserman A.Deep features for text spotting[C]//European conference on computer vision.Springer,Cham,2014:512-528.
- [2] Huang W,Lin Z,Yang J,et al.Text localization in natural images using stroke feature transform and text covariance descriptors[C]//Proceedings of the IEEE International Conference on Computer Vision.2013:1241-1248.
- [3] Shi B,Bai X,Belongie S.Detecting oriented text in natural images by linking segments[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2017:2550-2558.
- [4] Ren S,He K,Girshick R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[J].Advances in neural information processing systems,2015,28:91-99.
- [5] Redmon J,Divvala S,Girshick R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2016:779-788.
- [6] Zhong Z,Jin L,Huang S.DeepText:A new approach for text proposal generation and text detection in natural images[C]//2017 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2017:1208-1212.
- [7] Gupta A,Vedaldi A,Zisserman A.Synthetic data for text localisation in natural images[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2016:2315-2324.
- [8] Li H et al.Towards End-to-End Text Spotting with Convolutional Recurrent Neural Networks[C]//IEEE International Conference on Computer Vision,2017:5248-5256.
- [9] 王望,徐望明,伍世虔,闫富海.基于卷积神经网络的字轮式仪表双半字符识别[J].武汉科技大学学报,2021,44(01):68-73.
- [10] 高在村,龚声蓉.基于量子门神经网络的车牌字符识别[J].计算机工程,2008,34(23):227-229.
- [11] 高全华,王晋国,孙锋利.基于Pseudo-Zernike不变矩的PNN车牌汉字识别[J].计算机工程,2009,35(04):196-198.
- [12] Cun Y L,Bengio Y.Word-level training of a handwritten word recognizer based on convolutional neural networks[C]// International Conference on Pattern Recognition.IEEE,1994:88-92.
- [13] Wang T,Wu D J,Coates A,et al.End-to-end text recognition with convolutional neural networks[C]// Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).IEEE,2012:3304-3308
- [14] Goodfellow I J,Bulatov Y,Ibarz J,et al.Multi-digit number recognition from street view imagery using deep convolutional neural networks[EB/OL].(2013-12-20).https://arxiv.org/abs/1312.6082.
- [15] Shi B,Bai X,Yao C.An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(11):2298-2304.
- [16] Baek Y,Lee B,Han D,et al.Character Region Awareness for Text Detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR2019).2019:9365-9374.
- [17] CNOCR [EB/OL].(2019-04-08).https://github.com/breezedeus/cnocr.
- [18] Smith R.An Overview of the Tesseract OCR Engine[C]//International Conference on Document Analysis & Recognition.IEEE Computer Society,2007:629-633.