无人机目标跟踪综述Overview of UAV Object Tracking
徐怀宇;黄伟;董明超;吴金明;
摘要(Abstract):
目标跟踪是计算机视觉的一个重要领域,近些年来由于无人机技术的快速发展,基于无人机的目标跟踪成为了研究热点。本文首先总结了一些最新的无人机数据集,并与其他数据集作对比,如:MOT17;其次回顾一些经典和最新的单目标和多目标跟踪算法,如:相关滤波、孪生网络和DSORT,并分析这些算法在不同场景下的适用性;最后测试并分析无人机数据集下的目标跟踪算法性能,并提出此方向研究的一些思考。
关键词(KeyWords): 无人机;目标跟踪;孪生网络
基金项目(Foundation):
作者(Authors): 徐怀宇;黄伟;董明超;吴金明;
参考文献(References):
- [1] Robicquet A,Sadeghian A,Alahi A,et al.Learning social etiquette:Human trajectory understanding in crowded scenes[C]//European conference on computer vision.Springer,Cham,2016:549-565.
- [2] Mueller M,Smith N,Ghanem B.A benchmark and simulator for uav tracking[C]//European conference on computer vision.Springer,Cham,2016:445-461.
- [3] Du D,Qi Y,Yu H,et al.The unmanned aerial vehicle benchmark:Object detection and tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:370-386.
- [4] Zhu P,Wen L,Bian X,et al.Vision meets drones:a challenge[J].arXiv preprint arXiv:1804.07437,2018.
- [5] Mot17 challenge,https://motchallenge.net/.
- [6] Wu Y,Lim J,Yang M H.Online object tracking:A benchmark[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2013:2411-2418.
- [7] Kristan M,Matas J,Leonardis A,et al.A novel performance evaluation methodology for single-target trackers[J].IEEE transactions on pattern analysis and machine intelligence,2016,38(11):2137-2155.
- [8] K.Bernardin and R.Stiefelhagen,Evaluating multiple object tracking performance:The CLEAR MOT metrics[J].EURASIP J.Image Video Process,vol.2008,2008.
- [9] Bolme D S,Beveridge J R,Draper B A,et al.Visual object tracking using adaptive correlation filters[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE,2010:2544-2550.
- [10] Henriques J F,Caseiro R,Martins P,et al.Exploiting the circulant structure of tracking-by-detection with kernels[C]//European conference on computer vision.Springer,Berlin,Heidelberg,2012:702-715.
- [11] Henriques J F,Caseiro R,Martins P,et al.High-speed tracking with kernelized correlation filters[J].IEEE transactions on pattern analysis and machine intelligence,2014,37(3):583-596.
- [12] Danelljan M,H?ger G,Khan F,et al.Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference,Nottingham,September 1-5,2014.BMVA Press,2014.
- [13] Danelljan M,Robinson A,Khan F S,et al.Beyond correlation filters:Learning continuous convolution operators for visual tracking[C]//European Conference on Computer Vision.Springer,Cham,2016:472-488.
- [14] Danelljan M,Bhat G,Shahbaz Khan F,et al.ECO:efficient convolution operators for tracking[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2017:6638-6646.
- [15] Tao R,Gavves E,Smeulders A W M.Siamese instance search for tracking[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2016:1420-1429.
- [16] Bertinetto L,Valmadre J,Henriques,Jo?o F,et al.Fully-Convolutional Siamese Networks for Object Tracking[J].2016.
- [17] Valmadre J,Bertinetto L,Henriques J,et al.End-to-end representation learning for correlation filter based tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2805-2813.
- [18] Li B,Yan J,Wu W,et al.High performance visual tracking with siamese region proposal network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8971-8980.
- [19] Zhu Z,Wang Q,Li B,et al.Distractor-aware siamese networks for visual object tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:101-117.
- [20] Fan H,Ling H.Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking[J].arXiv preprint arXiv:1812.06148,2018.
- [21] Wang Q,Zhang L,Bertinetto L,et al.Fast Online Object Tracking and Segmentation:A Unifying Approach[J].arXiv preprint arXiv:1812.05050,2018.
- [22] Luo W,Xing J,Zhang X,et al.Multiple Object Tracking:A Literature Review[J].Eprint Arxiv,2015.
- [23] S.H.Bae and K.J.Yoon.Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning[M].Computer Vision and Pattern Recognition,2014.
- [24] Hong Yoon J,Lee C R,Yang M H,et al.Online multi-object tracking via structural constraint event aggregation[C]//Proceedings of the IEEE Conference on computer vision and pattern recognition.2016:1392-1400.
- [25] Milan,A.,Rezatofighi,S.H.,Dick,A.R.,Reid,I.D.,Schindler,K.:Online multitarget tracking using recurrent neural networks.In:AAAI (2017)
- [26] Thoreau M,Kottege N.Improving Online Multiple Object tracking with Deep Metric Learning[J].2018.
- [27] Zhu J,Yang H,Liu N,et al.Online multi-object tracking with dual matching attention networks[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:366-382.
- [28] B.Yang,R.Nevatia.An online learned CRF model for multi-target tracking[M].CVPR,2012.2034-2041.
- [29] Dorin Comaniciu,Visvanathan Ramesh,Peter Meer.Real-Time Tracking of Non-Rigid Objects Using Mean Shift.CVPR,2000.
- [30] Butt A A,Collins R T.Multi-target Tracking by Lagrangian Relaxation to Min-Cost Network Flow[C]//Computer Vision and Pattern Recognition (CVPR),2013 IEEE Conference on.IEEE,2013.
- [31] Wen L,Du D,Li S,et al.Learning Non-Uniform Hypergraph for Multi-Object Tracking[J].2018.
- [32] Zhang L,Li Y,Nevatia R.Global data association for multi-object tracking using network flows[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008),24-26 June 2008,Anchorage,Alaska,USA.IEEE,2008.
- [33] Maksai A,Wang X,Fleuret F,et al.Non-Markovian Globally Consistent Multi-object Tracking[C]//IEEE International Conference on Computer Vision.2017.
- [34] Schulter S,Vernaza P,Choi W,et al.Deep Network Flow for Multi-Object Tracking[J].2017.
- [35] Feng W,Hu Z,Wu W,et al.Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification[J].2019.
- [36] Son J,Baek M,Cho M,et al.Multi-object Tracking with Quadruplet Convolutional Neural Networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2017.
- [37] B.Yang and R.Nevatia.Online learned discriminative part-based appearance models for multi-human tracking[M].inProc.Eur.Conf.Comput.Vis.,2012.484-49.
- [38] Henschel R,Leal-Taixé,Laura,Cremers D,et al.Fusion of Head and Full-Body Detectors for Multi-Object Tracking[J].2017.
- [39] Sadeghian A,Alahi A,Savarese S.Tracking The Untrackable:Learning To Track Multiple Cues with Long-Term Dependencies[J].2017.
- [40] Wojke N,Bewley A,Paulus D,Simple online and raeltime tracking with a deep association metric[C]//2017 IEEE International Conference on Imge Processing (ICIP),IEEE,2017:3645-3649.
- [41] Ren X,Huang Z,Liu D,et al.Multiple object video tracking using GRASP-MHT[C]//International Conference on Information Fusion.IEEE,2012.
- [42] Xiang Y,Alahi A,Savarese S.Learning to track:Online multi-object tracking by decision making[C]//Proceedings of the IEEE international conference on computer vision.2015:4705-4713.
- [43] Xue X,Li Y,Shen Q.Unmanned Aerial Vehicle Object Tracking by Correlation Filter with Adaptive Appearance Model[J].Sensors,2018,18(9):2751.
- [44] Jeffress L A.Cerebral mechanisms in behavior;the Hixon Symposium[J].1951.
- [45] Danelljan M,H?ger G,Khan F,et al.Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference,Nottingham,September 1-5,2014.BMVA Press,2014.
- [46] Wang M,Liu Y,Huang Z.Large margin object tracking with circulant feature maps[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4021-4029.
- [47] Ren S,He K,Girshick R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems.2015:91-99.
- [48] Song Y,Ma C,Wu X,et al.Vital:Visual tracking via adversarial learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8990-8999.
- [49] Goodfellow I,Pouget-Abadie J,Mirza M,et al.Generative adversarial nets[C]//Advances in neural information processing systems.2014:2672-2680.
- [50] Wang N,Song Y,Ma C,et al.Unsupervised Deep Tracking[J].arXiv preprint arXiv:1904.01828,2019.