边缘网络服务技术综述Survey on Service Technology at the Edge of Network
张欣;邓浩江;尤佳莉;
摘要(Abstract):
随着以5G、大数据、物联网和人工智能为代表的新一代信息技术的迅速发展,采用云计算服务架构提供平台化服务面临诸多的挑战。5G支持超大规模物联网互联与超低时延通信,将使得海量数据实时生成,难以全部汇聚到云端;而超低时延通信,又对基于现场的服务响应提出了要求。随着边缘网络设备的计算和存储能力不断提高,边缘网络已经具备就近提供现场服务的条件。边缘网络作为距离用户最近的泛在网络,主要提供两大类服务,第一大类是内容服务,第二大类是计算服务。一方面,内容服务部署需要更靠近用户。另一方面,用户的计算服务请求需要就近处理。因此,如何基于边缘网络为用户提供内容服务和计算服务,降低服务响应时延,提高网络服务质量与用户体验,具有重要研究意义。
关键词(KeyWords): 边缘网络;内容服务;计算服务;服务优化
基金项目(Foundation): 中国科学院战略性科技先导专项课题:SEANET技术标准化研究与系统研制(编号:XDC02070100)
作者(Authors): 张欣;邓浩江;尤佳莉;
参考文献(References):
- [1] Bonomi F,Milito R,Zhu J,et al.Fog computing and its role in the internet of things[C]//the first edition of the MCC workshop on Mobile cloud computing.2012:13-16.
- [2] Acharya J,Gaur S.Edge compression of gps data for mobile iot[C]//IEEE Fog World Congress (FWC).IEEE,2017:1-6.
- [3] Forman,G H,Zahorjan J.The challenges of mobile computing[J].Computer,1994,27(4):38-47.
- [4] Fernando N,Seng W L,Rahayu W.Mobile cloud computing:A survey[J].Future generation computer systems,2013,29(1):84-106.
- [5] Abolfazli S,Sanaei Z,Ahmed E,et al.Cloud-based augmentation for mobile devices:motivation,taxonomies,and open challenges[J].IEEE Communications Surveys & Tutorials,2013,16(1):337-368.
- [6] Drolia U,Martins R,Tan J,ea al.The case for mobile edge-clouds[C]//2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing.IEEE,2013:209-215.
- [7] Shi W,Dustdar S.The promise of edge computing[J].Computer,2016,49(5):78-81.
- [8] Klas G I.Fog computing and mobile edge cloud gain momentum open fog consortium,etsi mec and Cloudlets[EB/OL].(2015-11-22).http://yucianga.info/wp-content/uploads/2015/11/15-11-22-Fog-computing-and-mobile-edge-cloud-gain-momentum-%E2%80%93-Open-Fog-Consortium-ETSI-MEC-Cloudlets-v1.pdf.
- [9] 网络通信与安全紫金山实验室、北京邮电大学等.未来网络白皮书—无服务器边缘计算网络白皮书(2021版)[R/OL].(2021-06)[2021-11].https://zhuanlan.zhihu.com/p/408863239.
- [10] Taleb T,Samdanis K,Mada B,et al.On multi-access edge computing:A survey of the emerging 5G network edge cloud architecture and orchestration[J].IEEE Communications Surveys & Tutorials,2017,19(3):1657-1681.
- [11] Giust F,Verin G,Antevski K,et al.MEC deployments in 4G and evolution towards 5G[J].ETSI White Paper,2018,24:1-24.
- [12] Hao P,Bai Y,Zhang X,et al.Edgecourier:an edge-hosted personal service for low-bandwidth document synchronization in mobile cloud storage services[C]//the Second ACM/IEEE Symposium on Edge Computing.2017:1-14.
- [13] Silva PMP,Rodrigues J,Silva J,et al.Using Edge-Clouds to Reduce Load on Traditional WiFi Infrastructures and Improve Quality of Experience[C]//IEEE 1st International Conference on Fog and Edge Computing (ICFEC).IEEE,2017:61-67
- [14] Abdelwahab S,Hamdaoui B,Guizani M,et al.Cloud of things for sensing-as-a-service:Architecture,algorithms,and use case[J].IEEE Internet of Things Journal,2016,3(6):1099-1112.
- [15] Jang M,Schwan K,Bhardwaj K,et al.Personal clouds:Sharing and integrating networked resources to enhance end user experiences[C]//IEEE INFOCOM 2014-IEEE Conference on Computer Communications.IEEE,2014:2220-2228.
- [16] Sathiaseelan A,Lertsinsrubtavee A,Jagan A,et al.Cloudrone:Micro clouds in the sky[C]//the 2nd Workshop on Micro Aerial Vehicle Networks,Systems,and Applications for Civilian Use.2016:41-44.
- [17] Chang H,Hari A,Mukherjee S,et al.Bringing the cloud to the edge[C]//IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).IEEE,2014:346-351.
- [18] Villari M,Fazio M,Dustdar S,et al.Osmotic computing:A new paradigm for edge/cloud integration[J].IEEE Cloud Computing,2016,3(6):76-83.
- [19] Morshed A,Jayaraman P P,Sellis T,et al.Deep osmosis:Holistic distributed deep learning in osmotic computing[J].IEEE Cloud Computing,2017,4(6):22-32.
- [20] 中国信息通信研究院.云网融合产业发展研究报告(2021年)[R/OL].(2021-04-08) [2021-11].https://max.book118.com/html/2021/0420/7112021123003120.shtm.
- [21] 中国电信集团公司.云网融合 2030技术白皮书[R/OL].(2020-11-13) [2021-11].https://m.thepaper.cn/baijiahao_9920970.
- [22] 中国移动研究院,华为技术有限公司.算力感知网络技术白皮书[R/OL].(2019-11) [2021-11].http://www.doc88.com/p-54661817523235.html.
- [23] 中国通信学会.算力网络前沿报告[R/OL].(2020-12) [2021-11].https://max.book118.com/html/2021/0612/5213044103003242.shtm.
- [24] 中国移动通信集团有限公司.算力网络白皮书[R/OL].(2021-11) [2021-11].http://www.ecconsortium.org/Lists/show/id/694.html.
- [25] Markakis E K,Karras K,Sideris A,et al.Computing,caching,and communication at the edge:The cornerstone for building a versatile 5G ecosystem[J].IEEE Communications Magazine,2017,55(11):152-157.
- [26] Markakis E K,Karras K,Zotos N,et al.EXEGESIS:Extreme edge resource harvesting for a virtualized fog environment[J].IEEE Communications Magazine,2017,55(7):173-179.
- [27] Anderson D.BOINC:A System for Public-Resource Computing and Storage[C]//5th IEEE/ACM International Workshop on Grid Computing.2004.
- [28] Anderson D P,Cobb J,Korpela E,et al.SETI@ home:an experiment in public-resource computing[J].Communications of the ACM,2002,45(11):56-61.
- [29] Ryden M,Oh K,Chandra A,et al.(2014,March).Nebula:Distributed edge cloud for data intensive computing[C]//2014 IEEE International Conference on Cloud Engineering.IEEE,2014:57-66.
- [30] Chang C,Srirama S N,Buyya R.Indie fog:An efficient fog-computing infrastructure for the internet of things[J].Computer,2017,50(9):92-98.
- [31] Mortazavi S H,Salehe M,Gomes C S,et al.Cloudpath:A multi-tier cloud computing framework[C]// the Second ACM/IEEE Symposium on Edge Computing.2017:1-13.
- [32] Kamiyama N,Nakano Y,Shiomoto K,et al.Analyzing effect of edge computing on reduction of web response time[C]// 2016 IEEE Global Communications Conference (GLOBECOM).IEEE,2016:1-6.
- [33] Mehta A,T?rneberg W,Klein C,et al.How beneficial are intermediate layer data centers in mobile edge networks[C]//2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS* W).IEEE,2016:222-229.
- [34] Noreikis M,Xiao Y,Yl?-Ja?iski A.QoS-oriented capacity planning for edge computing[C]//2017 IEEE International Conference on Communications (ICC).IEEE,2017:1-6.
- [35] El Kafhali S,Salah K.Efficient and dynamic scaling of fog nodes for IoT devices[J].The Journal of Supercomputing,2017,73(12):5261-5284.
- [36] Zhou Z,Chen X,Li E,et al.Edge intelligence:Paving the last mile of artificial intelligence with edge computing[J].Proceedings of the IEEE,2019,107(8):1738-1762.
- [37] Erol-Kantarci M,Sukhmani S.Caching and computing at the edge for mobile augmented reality and virtual reality (AR/VR) in 5G[C]//Ad Hoc Networks.Springer,Cham,2018:169-177.
- [38] Cheng B,Papageorgiou A,Cirillo F,et al.Geelytics:Geo-distributed edge analytics for large scale iot systems based on dynamic topology[C]//2015 IEEE 2nd World Forum on Internet of Things (WF-IoT).IEEE,2015:565-570.
- [39] Jayaraman P P,Gomes J B,Nguyen H L,et al.Cardap:A scalable energy-efficient context aware distributed mobile data analytics platform for the fog[C]//East European Conference on Advances in Databases and Information Systems.Springer,Cham,2014:192-206.
- [40] Qi B,Kang L,Banerjee S.A vehicle-based edge computing platform for transit and human mobility analytics[C]//the Second ACM/IEEE Symposium on Edge Computing.2017:1-14.
- [41] Lee K,Flinn J,Noble B D.Gremlin:scheduling interactions in vehicular computing[C]//the Second ACM/IEEE Symposium on Edge Computing.2017:1-13.
- [42] Ananthanarayanan G,Bahl P,Bodík P,et al.Real-time video analytics:The killer app for edge computing[J].computer,2017,50(10):58-67.
- [43] Yang S.IoT stream processing and analytics in the fog[J].IEEE Communications Magazine,2017,55(8):21-27.
- [44] Malensek M,Pallickara S L,Pallickara S.Hermes:Federating fog and cloud domains to support query evaluations in continuous sensing environments[J].IEEE Cloud Computing,2017,4(2):54-62.
- [45] Kar G,Jain S,Gruteser M,et al.Real-time traffic estimation at vehicular edge nodes[C]//the Second ACM/IEEE Symposium on Edge Computing.2017:1-13.
- [46] Azimi I,Anzanpour A,Rahmani A M,et al.HiCH:Hierarchical fog-assisted computing architecture for healthcare IoT[J].ACM Transactions on Embedded Computing Systems (TECS),2017,16(5s):1-20.
- [47] Gia T N,Jiang M,Rahmani A M,et al.Fog computing in healthcare internet of things:A case study on ecg feature extraction[C]//2015 IEEE international conference on computer and information technology;ubiquitous computing and communications;dependable,autonomic and secure computing;pervasive intelligence and computing.IEEE,2015:356-363.
- [48] Zao J K,Gan T T,You C K,et al.Augmented brain computer interaction based on fog computing and linked data[C]//2014 International Conference on Intelligent Environments.IEEE,2014:374-377.
- [49] Mei B,Li R,Cheng W,et al.Ultraviolet radiation measurement via smart devices[J].IEEE Internet of Things Journal,2017,4(4):934-944.
- [50] Yi S,Hao Z,Zhang Q,et al.Lavea:Latency-aware video analytics on edge computing platform[C]//the Second ACM/IEEE Symposium on Edge Computing.2017:1-13.
- [51] Lin Y,Shen H.CloudFog:Leveraging fog to extend cloud gaming for thin-client MMOG with high quality of service[J].IEEE Transactions on Parallel and Distributed Systems,2016,28(2):431-445.
- [52] Liu C,Cao Y,Luo Y,et al.A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure[J].IEEE Transactions on Services Computing,2017,11(2):249-261.
- [53] Drolia U,Guo K,Narasimhan P.Precog:Prefetching for image recognition applications at the edge[C]//the Second ACM/IEEE Symposium on Edge Computing.2017:1-13.
- [54] Tuli S,Basumatary N,Buyya R.Edgelens:Deep learning based object detection in integrated iot,fog and cloud computing environments.arXiv preprint arXiv:1906.11056.2019.
- [55] Lin Z Q,Chung A G,Wong A.Edgespeechnets:Highly efficient deep neural networks for speech recognition on the edge.arXiv preprint arXiv:1810.08559.2018.
- [56] Chen G,Parada C,Heigold G.Small-footprint keyword spotting using deep neural networks[C]//2014 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2014:4087-4091.
- [57] Chen G,Parada C,Sainath T N.Query-by-example keyword spotting using long short-term memory networks[C]//2015 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2015:5236-5240.
- [58] Hsu C C H,Wang M Y C,Shen H C,et al.FallCare+:An IoT surveillance system for fall detection[C]//2017 International Conference on Applied System Innovation (ICASI).IEEE,2017:921-922.
- [59] Park D,Kim S,An Y,et al.Lired:A light-weight real-time fault detection system for edge computing using lstm recurrent neural networks[J].Sensors,2018,18(7):2110.
- [60] Navarro P J,Fernandez C,Borraz R,et al.A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data[J].Sensors,2017,17(1):18.
- [61] Ghoneim A,Muhammad G,Amin S U,et al.Medical image forgery detection for smart healthcare[J].IEEE Communications Magazine,2018,56(4):33-37.
- [62] Feng Z,George S,Harkes J,et al.Edge-based discovery of training data for machine learning[C]//2018 IEEE/ACM Symposium on Edge Computing (SEC).IEEE,2018:145-158.
- [63] Osia S A,Shamsabadi A S,Taheri A,et al.Private and scalable personal data analytics using hybrid edge-to-cloud deep learning[J].Computer,2018,51(5):42-49.
- [64] Das A,Degeling M,Wang X,et al.Assisting users in a world full of cameras:A privacy-aware infrastructure for computer vision applications[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp.).IEEE,2017:1387-1396.
- [65] Pajouh H H,Javidan R,Khayami R,et al.A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks[J].IEEE Transactions on Emerging Topics in Computing,2019,7(2):314-322.